Parameter Reference Loss for Unsupervised Domain Adaptation

نویسندگان

  • Jiren Jin
  • Richard G. Calland
  • Takeru Miyato
  • Brian K. Vogel
  • Hideki Nakayama
چکیده

The success of deep learning in computer vision is mainly attributed to an abundance of data. However, collecting large-scale data is not always possible, especially for the supervised labels. Unsupervised domain adaptation (UDA) aims to utilize labeled data from a source domain to learn a model that generalizes to a target domain of unlabeled data. A large amount of existing work uses Siamese network-based models, where two streams of neural networks process the source and the target domain data respectively. Nevertheless, most of these approaches focus on minimizing the domain discrepancy, overlooking the importance of preserving the discriminative ability for target domain features. Another important problem in UDA research is how to evaluate the methods properly. Common evaluation procedures require target domain labels for hyper-parameter tuning and model selection, contradicting the definition of the UDA task. Hence we propose a more reasonable evaluation principle that avoids this contradiction by simply adopting the latest snapshot of a model for evaluation. This adds an extra requirement for UDA methods besides the main performance criteria: the stability during training. We design a novel method that connects the target domain stream to the source domain stream with a Parameter Reference Loss (PRL) to solve these problems simultaneously. Experiments on various datasets show that the proposed PRL not only improves the performance on the target domain, but also stabilizes the training procedure. As a result, PRL based models do not need the contradictory model selection, and thus are more suitable for practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Learning Transferrable Representations for Unsupervised Domain Adaptation

Supervised learning with large scale labelled datasets and deep layered models has caused a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers from generalization issues under the presence of a domain shift between the training and the test data distribution. Since unsupervised domain adaptation algorithms directly address this domain shift problem...

متن کامل

Unsupervised Domain Adaptation with Residual Transfer Networks

The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source doma...

متن کامل

Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation

In this work, we face the problem of unsupervised domain adaptation with a novel deep learning approach which leverages on our finding that entropy minimization is induced by the optimal alignment of second order statistics between source and target domains. We formally demonstrate this hypothesis and, aiming at achieving an optimal alignment in practical cases, we adopt a more principled strat...

متن کامل

Unsupervised Domain Adaptation for 3D Keypoint Prediction from a Single Depth Scan

In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan/image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency provides effective regularization for keypoint prediction on unlabeled instances. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07170  شماره 

صفحات  -

تاریخ انتشار 2017